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Abstract 

In this paper, we show how genetic algorithms can be used to compnte auto matie ail y a balanced 
sectoring of airspace to increase Air Traffic Control capacity in high density areas. 

1 Introduction 

The CENA is the organism in charge of studies and research for improving the French ATC 
systems. Stndies on the use of genetic algorithms for conftict resolution have given encouraging 

results [2), and a new study has been funded to solve the load balancing problem for Air Traffic 
Contr·ol. When joining two airports, an aircraft must follow rontes and beacons ; these beacons 
are necessary for pilots to know their position during navigation and because of the small number 
of beacons on the ground they often represent crossing points of different airways. 

Crossing points may generate conflicts between aircraft when their trajectories converge on it 
at the same time and induce a risk of collision. 

At the dawn of civil aviation, pilots resolved conflicts themselves because they always flew in 
good weather conditions (good visibility) with low speed aircraft. On the other hand, modern jet 
aircraft do not enable pilots to resolve conflicts because of their high speed and their ability to 

fly with bad visibility. Therefore, pilots must be helped by an air traffic controller on the ground 

who has a global view of the CUiTent traffic distribution in the airspace and can give orders to 

the pilots to avoid collisions. 

As there are lot of planes simultaneously present in the sky, a single controller is not able to 

manage ail of them. In France, airs pace is partitioned into different sectors, each of them being 
assigned to a controller. 

Sectoring is currently done in an empirical way by some airspacc experts who apply rules they 
have learned with experience. Actually, the sectoring modifications are usually due to traffic 

evolution on long period and when a sector is regularly overloaded it has to be modified. To 

reach this aim, an ad hoc commission meets to elaborate new frontiers for the sectors in order 

to balance the workload. Afterward sectoring is updated (until new problems arise). 
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This way of making is relevant because it takes into account a lot of practical aspects but has a 

limited effect on the local zone it trcats. One can try to improve and complete this process with 
an automatic approach in order to give a solution to the sectoring problem in the whole airspace 
and that could be refined by experts. 

This first automatic approach is very new and still may be improvcd but it gives very encouraging 

results. 

In this paper we show how weil Genetic Algorithms manage this problem (after sorne simplifi­
cations and modeling). In the first pmt we describe more precisely our problem and make sorne 
relevant simplification to develop a mathematical mode!. In the second part we present complete 

examples of resolution with the different Genetic Algorithms. 

2 A simplified model 

2.1 Introduction 

Before doing a mathematieal description of our problem, it is necessary to stress out our 
framework to introduce some simplifications for our mode!. Since it is very long to train an 
air traffic controller on his sector (from 3 to 4 months), we must not investigate a real time 
sectoring optimization according to the variations of the traffic load. Instead we have to consider 
a registered maximum load traffic period on the working network. Our problem is then to 

partition the air space to get a balanced induced control workload. 

When examining the physical air traffic network, we notice that airways are superposition of 
several routes which have the same projection on the floor but different altitudes according to 
their azimuth (senti circular mIel). So an airway can be modeled by a bidirectional link which 

gathers several individual aircraft route (see figure 1). 

Then, our 3 dimensional transportation network will be modeled by a classical 2 dimensions 

network on a horizontal plan. This modeling is not far from reality because of the small number 

of routes superposed on the sarne link (each link roughly contains 4 routes). 

When aircraft go from point A ta point B, they have ta use airways of the air traffic network like 

drivers do on the road network. As on a road, there are crossing in the sky and aircraft have to 
safely pass these points. Because of their speed, aircraft can not make anti-collision procedure 
alone and are helped by controllers who solve the different conflicts that may arise. 

But nowadays, there me tao many flights in the airspace (for instance an average of 6000 aircraft 

movements is registered everyday in the French airspace) for a single controller to manage ail 

1 Aircraft with heading between 0 and 180 have ta ft y with odd altitude (in hundred of feet) and cven altitude 
for hcadings between 180 and 360 
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this traffle; thus airspaee is divided into several sectors, each sector being assigned to a controller. 

As any human being, a controller has working limits and a sector is said to be saturated when 

there are 3 conflicts to solve and 15 aircraft in it (this rate must not last too long), 

The controller workload has several origins that can be divided into two categories: 

1. there are quantitative factors which includc the number o f  flights, the number of con­
flicts etc ... , which can be precisely modeled in a mathematical way and handled by an 

optimization algorithm; 

2. there are psychological factors as stress, concentration etc .. . which have no evident ma­

thematical formulation but are in direct relationship with the previous ones according to 

the controllers themselves, 

So, we will only take into account quantitative elements in our application on first approximation, 

Having now a model, we can define more precisely our goals in the following way: 

one considers an air trafflc transportation network in a 2 dimensional space with 
flows on it inducing a workload distributed over the space. This workload must be 

partitioned into K equilibrated convex sectors in a way thatminimizes coordinations2. 

Figure 2 shows an example of network sectoring with 6 sectors. 

This sectoring must take some constraints into account eoming from Air Traffic Control system : 

2When an aircraft crosses a sector frontier, conlrollers in charge of thase sectors have to cxchangc informations 
about the ftight inducing a workload called coordination 
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- a pilot must not encounter twice the same controller during his flight to prevent useless 

coordinations ; this means that an aircraft crossing a sector will encounter 2 and only 2 sector 
frontiers. To guarantee that our sectors met this constraint we force them to be convex in the 
topological sense3. This constraint gives sectors a polygonal shape. 

- a sector frontier has to be at least at a given distance from each network node (security 
constraint). As a matter of fact, when a controller has to solve a conflict, he needs a minimum 
amount of time to elaborate a solution. Each controller managing individually his sector, if a 

sector frontier is too close to a crossing point, he is not able to solve any conflicts because he 
has not enough time between the coordination step (with the previous sector where the ait'craft 

cornes from) and the lime the aircraft reaches the crossing point. The minimum delay time is 
fixed at 7 minutes and can be convelted into a distance knowing the aircraft speed. 

- an aircraft has to stay at Ieast a given amount of time (a few minutes) in each sector it crosses 
to give enough time to the controller to manage the flight in good conditions (min stay time 
constraint). We express this constraint by a minimum distance between two frontiers cutting the 

same network link. 

The last two constraints will be implemented the same way by forcing a minimum length for 
any link segment between two consecutive frontiers or between a node and a frontier. 

3this kind of convexity is stronger than the one imposcd by our problem (our sectors have ta be convex according 
to the direction of the links of the network and not in aIl directions) but i8 casier to implement 
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Wc define our transportation network as a doublet (N, L) in which N is the set of nodes (with 
their positions in a topological space) and L is the set of links each of them transporting a 
quantity fij of flow from uode i to node j [8]. 

2.2.2 Construction of sectors 

According to the previous section, the sectors we have to build have to be convex (with 

a polygonal shape induced by the convexity property). To reach this goal we use a Forgy 

aggregation method [ 1 1] coming fi'om dynamic clustering in exploratory statistics which aims 
at extracting clusters from a set of points randomly distributed in a topological space (see [4, Il]). 

This method randomly throws J( points (the class centers) in the space domain containing the 

transportation network and aggregates al! the domain points to their nearest class center. This 
method ends up in a J( partitioning of our domain into convex sectors with linear frontiers. 

Figure 3 gives an example of a 5-pm1itioning of a rectangle. 

2.2.3 Workload induced in a control sector 

As said before, we just take quantitative criterions into account to compute control!er workload 

(see [13]). According to the controllers themselves, workload can be divided into three parts 

which correspond respectively to the conflict workload, the coordination workload and the 
trajcctories monitoring workload of the different aU'craf! which are present in a sector : 
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- the conflict worlcload gathers the different actions of the controller to solve conflicts. 

- the coordination worlcload corresponds to the information exchanges between a controller and 

the controller in charge of the bordering seetor or between a controller and the pilots when an 
aireraft crosses a sector fronlier. 

- the monitoring aims at checking tbe different trajeetories of the aireraft present in a sector and 

induces a workload. 

2.2.4 Constraints 

We handle the different eonstraints previously introduced in the following way: 

seetors convexity: this eonstraint is already satisfied by the construction method of sectors. 

security and Min stay time cOllstraints: those two constraints can be synthesized by an al'ti­

ficial increase of the coordination work load on links. 

On the figure 4 we give sorne examples where the 3 previous constraints are not satisfied. 
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The problem we have ta solve ean be divided in two different parts eorresponding ta our two 

different goals: 

1. equilibrium of the different seetors workload aeeording to the number of aireraft and 

eonfliets in eaeh seetor; 

2, minimization of the coordination workload. 

The second criterium is typically a discrete graph partitioning problem with topological cons­

traints and then is NP _HARD [5). Having chosen a continuous flow representation, the first 
criterium induces a discrete-continuous problem which is also NP �-[ARD. 

So, according ta the size of our network (about 1000 nodes), classical combinatorial optimization 
is not relevant and stochastic optimization seems to be more suitable. 

Moreover this kind of problem may have several optimal solutions (or near optimal) due ta the 

different possible symmetries in the topologieal space etc.", and one must be able ta find ail 
of them because they have to be refined by experts and we do not know at this step which one 
is really the best. This last point makes us reject classical simulated reannealing optimization 
which updates only one state variable, even if it might give better results in some cases [7). 

On the other hand, Genetic Algorithms (GAs) maintain and improve a numerous population 

of states variables according to their fitness and will be able to find several optimal (or near 
optimal) solutions, Then, GAs seem to be relevant to solve our sectoring problem. 

3.2 Different kinds of GAs we tried 

3.2.1 Generais steps of GAs 

First, we generate a population of sectoring, each represented by a set of class centers which are 
points in our 2-dimensional space. Then each chromosome defines one and only one sectoring, 

Afterward we select4 a new population according to the different fitness and apply classical 
operators as crossover, mutation etc." 

Figure 5 gives an example of one GA iteration with 5 sectors, 

4Selection aims at reproducing better individual according to thcir fitness. Wc tried two kinds of selection 
process, Roulette Wheel Selection" and "Stochastic Remainder Without Replacement Selection", the 1ast one 
always gave better results. 
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Figure 5 : A GA iteration example, Pc probability of crossover, Pm probability of mutation 

3.2.2 GA with binary chromosome 

A chromosome must containt aU the sectoring information for the GA to be able to evaluate the 

fitness for each individu al. We summerize this information by a set of points in our geographical 
space caUed class centers (one can show that for each class center set there is just one sectoring 
induced see [ 11])). Having chosen binary strings in this first example, we implement chromo­
some as a string of bits containing the concatenation of the different class center positions (see 

figure 6). 

This implementation enables us to use classical operators for GAs. 

3.2.3 GA with ftoating point chromosome 

In this case, each position (normalized into [0,1]) is directly coded in a chromosome without 
binary conversion (see [10]). So, the chromosome has the structure showed in figure 7. 

This new structure involve sorne new kind of operators we now describe. 

Crossover After selecting two parents in the CUITent population, we randoIIÙY chose an aUele 

position (so we select two sectors at the same aUele position, one in each sectoring). Afterward, 

we join by a straight line the associatcd class centers.Then, wc move the class centers on this 
line according to a uniform random variable. An example of this kind of crossover is gi ven in 
figure 8 (aUele 1 has been selected in this example). 
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Mutation When we mutate a chromosome we randorrùy select an allele position ane! we move 

its assoeiatee! c1ass center by ae!ding to it a noises (see figure 9 (in this example allele 2 has been 
selected for mutation». 

The structure of this new GA is exactly the same as the binary GA in the succession of the 

different steps. 

3.3 Evolution GA 

This last version of GA is a dynamic variant of the previous one with sorne analogy with 
simulated annealing. As for the previous one we select parents from the current population and 

make them cross and mutate to create a new population. 

Crossover After selecting one c1ass center in eaeh parent chromosome (at the same allele 
position) we move eaeh one in a random way with progressive decreasing range as the generation 
number inCl·eases. 

This kine! of erossover process ine!uces large moving at the beginning (--> quasi randomly 

exploration of the state domain) and very small ones at the end (--> these small moving enable 

the algorithm to "climb hills"). 

Sit seems that best results are given with an affine distribution and fiot with a Gaussian 
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Mutation This operator randomly moves one class center in a chromosome with the same 

law as for crossover. According to the range law the initiaIs moving are vely important so space 

is explored in a quasi randomly way and the moving become smaller as the generation number 
increases. The objective evaluations are refined as in an "hill climbing" process in which the 

climbing direction is given by the selection process. 

After applying those two operators, we have four individuals (two parents P l  ,P2 and two children 
Cl,C2) with their respective fitness. Afterward, those four individuals compete in a tournament. 

The two winners are then inserted in the next generation. The selection process of those winners 
is the following. 

If Cl is better than P l  then Cl is selected. Else Cl will be selected according to a probability 

which decrease with the generation number. 

Then, at the beginning, CI has a probability 0.5 to be selected although it is worse than P I  and 

this probability decrease to 0.0 1  at the end of the process. 

A description of this algorithm is given on figure 10 

4 Results 

4,1 Binary GA 

Those evaluations were done with the classical SGA [6, 12] of Goldberg and give good results 
on very small networks. 
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When the network size increases, this algorithm becomes inefficient because of the crossover 

and mutation operators which induce a quasi random moving in the state space. This is due to 
the fact that those operators do not take into account the space point position in the chromosome 

and break it very roughly. This last point made us change the structure of our chromosome into 

a floating string where the crossing position respects each individu al floating allele. 

4.2 Floating GA (FGA) and Evolution GA (EGA) 

The previous algorithm being too limited, we tried and compare two floating point GA (F­

GA,EGA). The results of those two algorithms are very encouraging as shown by the following 
experiments results. 

To compare and evaluate these algorithms, we have used an artificial test network (see figure Il 

and figure 12) 
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As we can see the first network has trivial solutions with 9 sectors. These solutions seems to be 

very evident for a human being because of the brain perception ability to investigate the different 

symmetries but for a computer these problems have no particularity and remain difficult. 

The different parameters we have chosen for our experiments are the following : 

population size: 400 

number of generations: 200 

probability of Cl'Ossover: 0.6 

probability of mutation: 0.06 

4,2,1 Convergence 

To see the convergence of our algorithms we observed the evolution of the population statistics 
(max and average) over the generations. As we can see on figure Il, the "square network" can 
be partitioned into 9 sectors in several ways and will be easier to manage as it has not a unique 
solution but a solution set. Both algoritluns find an exact solution very quickly (15 generations 

for FGA and 8 for EGA, see figure 13 and figure 14), butEGA gives better results on the average 

stat. 

After this first experiment we tried to partition an asymmetric network into 5 sectors (see figure 

12). This network has no trivial solutions (our future real air network neither has) and it seems 
evident that the solution space is much smaller than for the "square network". This last point 

indu ces a slower convergence rate (as we can see on figures 15 and 16) with no exact solutions. 

According to the balance error results, the given solutions are very close to OUI' objective and 

the most unbalanced sectors is Jess than 0.7% distant from the objective. 
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The physical sectoring result satisfies the topological constraints as we can see an figure 17 

5 Conclusion 

This study showed us how Genetic Algorithm were suitable to solve the space sectoring problem 

with very special constraints. To reach this aim we had to extend the chromosome concept to 

floating strings so that operators do not break the clu-omosome structure roughly. This mo­
dification really improved the algoritlun performances regarding the resolution speed and the 
result accuracy. Afterward we added a tournament operator and used dynamic parameters to 
improve the space exploration as well as the selection process. This last change brought good 
improvements to the algorithm convergence rate. Like in every Genetic Algorithm, the key of 
success lies in the modeling and the operators. Actually, both must be as close as possible to 
the application problem. In our case, the representation seems to be very close to the physical 

application but operators can still be improved, though the ones we have used gave very good 

results. 

One possibility to improve this algorithm would be to reinforce the Simulated Annealing 
concept used in the different operators as Goldberg does in his PRSA [9] algorithm (with binary 

chromosome). This brings in fact some convergence theOl'ems coming from the Simulated 

Annealing theory. On the other hand, as for Simulated Annealing, the (stochastic) convergence 

is ensure only when the fitness probability distribution law is stationary in each state point [1]. 

We would then have the same drawbacks when this hypothesis is not satisfied. 

Finally it would be very interesting to try different acceptance probability laws and different 

moving probability laws to change the way of exploring the space in our last algorithm. 
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In this first study, we assumed that traffie flows were eorreetly assigned (traffie assignment aims 

at distributing flows over a network to optimize an objective) before the algorithm partitioned 

the work load spread over spaee. But after partitioning air spaee, we are not sure that traffie 

assignment is still optimal due to the faet that traffie assignment and seetoring interaet with eaeh 
other. The next step of this study is precisely to mix these two optimization problems in a single 
genetie algorithm whieh will maximize a global objective funetion. 
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