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Abstract This paper deals with the problem of predicting
an aircraft trajectory in the vertical plane. A method de-
pending on a small number of starting parameters is intro-
duced and then used on a wide range of cases. The cho-
sen method is based on neural networks. Neural networks
are trained using a set of real trajectories and then used to
forecast new ones. Two prediction methods have been devel-
oped: the first is able to take real points into account as the
aircraft flies to improve precision. The second one predicts
trajectories even when the aircraft is not flying. After depict-
ing those prediction methods, the results are compared with
other forecasting functions. Neural networks give better re-
sults because they only rely on precisely known parameters.
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1 Problem overview

Trajectory prediction is one of the most important prob-
lems to solve regarding Air Traffic Control. All con-
trol systems (conflict detection, monitoring, resolution,
etc) heavily depend on the quality of the prediction. If
horizontal prediction is quite accurate in 2D (i.e (x,y)
plane), because aircraft can follow very precisely their
route, predictions in 2D+1 ((x,y,t)) as well as in the ver-
tical plane are still poor. In fact, heading can be fore-
casted precisely but speed prediction suffers a lack of
precision. For the last years, many different technics
have been tested:

• using flight equations;

• creating models of aircraft ([1], [2] or [3]) in order
to simulate flights. These models are either based
on simplified aerodynamic equations or tables giv-
ing speed corresponding to the current altitude

• using non-parametric methods ([4]).

The main problem with the first two methods is that they
need some parameters that are not easy to get; vertical
speed depends on various parameters such as the air-
craft take off weight; thrust, drag and lift are functions
of the aircraft type, of flight parameters given to the
Flight Management Systems etc. These informations
are usually unavailable to the ground control system.
Moreover, such models should be developed for each
type of aircraft. The third method does not take the air-
craft type into account: it is just curve fitting. But, if this
method is excellent for approximating functions in the
middle of the curve, its precision is poor on the edges,
where we look for the best prediction.
Our goal is to forecast aircraft trajectories from a re-
duced set of known points using neural networks. Given
a set of initial radar plots of an aircraft (see figure 1),
how can its future trajectory be forecasted? The method
should not depend on parameters like weight, wind, op-
erator’s flight procedure or flight plans and only take
into account the available information: the aircraft type
and its RFL1.

2 Principles

For a unique type of aircraft, we will use a set of
recorded trajectories as a learning base for the neural
network, and then evaluate its performance on a test set.
The neural network used is made of neurons modeled
as in [5]. It is feed-forward with a single hidden layer
and the training procedure is the classic batch back-
propagation algorithm as described in [6]. Time is dis-
cretized so that trajectories are represented with points
sampled every 10 s. A vertical trajectory will then be
a set of altitudesz0, z1, z2, . . . wherez0 stands for the
altitude att = 0 s andzi corresponds tot = 10 ∗ i sec-

1Requested Flight Level stands for the FL an aircraft wants to
reach. 1 FL=100 ft
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Figure 1: Example of prediction based on a known part
of a climbing trajectory

onds. The patterns that could be passed to the network
would be composed of:

[zi]︸︷︷︸
current altitude

, [zi−n+1 − zi−n, . . . , zi − zi−1︸ ︷︷ ︸
n past vertical speeds

]

as the input part while the output is

[zi+1 − zi]︸ ︷︷ ︸
speed to predict

It is important to note that the current altitudezi is an
essential input because an aircraft does not climb the
same way at 1000 ft and at 30000 ft.
But, as an aircraft does not climb the same way when
it is 5000 ft away from its final altitude and when it is
only 500 ft away, we must also provide a fundamental
information: the RFL. This data is given in the quantity
RFL− zi wherezi represents the current altitude. The
RFL is not directly provided because the aircraft has
to intercept this flight level smoothly. So giving that
difference helps it to know when to decrease the vertical
speed. The neural networks architecture chosen is given
on figure 2 and patterns used are composed of:

[zi], [RFL− zi], [zi−n+1 − zi−n, . . . , zi − zi−1]

as the input data and the output is still

[zi+1 − zi]

Zi

Zi+1-Zi

RFL-Zi

Zi-n+2-Zi-n+1

Zi-Zi-1

Figure 2: Network used for prediction

2.1 Standard method

To forecast positions of the aircraft after the training
phase:

• we consider [zi], [RFL − zi], [zi−n+1 −
zi−n, . . . , zi − zi−1] as the current pattern
which is used by the trained network to predict
ẑi+1 − zi. This gives the next forecasted altitude
ẑi+1 corresponding tot = 10 ∗ (i + 1) seconds

• we create next input pattern with this new position:
[ẑi+1], [RFL− ẑi+1], [zi−n+2− zi−n+1, . . . , zi−
zi−1, ẑi+1 − zi]

• we go back to the first step using this pattern to
forecast altitudêzi+2. This process is repeated un-
til climb is completed.

Then, a complete trajectory can be constructed using
its first n known points with this standard (S) method.
Datas are sampled each 10 seconds and the value ofn is
set to 10: each pattern will be composed of 10*10=100
s of flight.

2.2 Sliding windows

For practical applications, using sliding windows is
very useful: an algorithm that would forecast positions
in a too far future is not efficient, as prediction can be
changed when modifications occur. The only way to do
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this is to include the real points in the patterns in or-
der to anticipate further positions with a slight delayδt.
The method is then:

• first, usen known speeds to make a prediction at
δt = 10 ∗ δi. Usingzi−n+1, . . . , zi that represent
the sliding window, the altitudezi+δi can be fore-
casted using the S method

• then, in order to predictzi+δi+1 the next known
pointzi+1 is included and
zi−n+2, . . . , zi+1 is used as the starting data (i.e
the sliding window is moved one step forward to
forecast the next point)

• these steps are iterated until the aircraft has
reached its RFL.

This method using sliding windows will be called the
SW prediction method. As it is reactive, real initial
points must be provided in order to get the prediction. If
we want to get rid of these, we can try to forecast these
starting altitudes with another neural network. This
would give a trajectory prediction before the aircraft ac-
tually flies and then allow us to use it for avoidance sys-
tems for example.

2.3 Two networks method

Another forecasting method can be built thanks to an-
other network learnt with the following patterns:

[z0], [RFL− z0] → [z1 − z0, . . . , zn − zn−1]

The starting altitudez0 and the remaining altitude to
reach the RFL are given. Then first initial speeds have
to be predicted. After the training phase, a complete
trajectory can be predicted using two networks (see fig-
ure 3). The other network will use the initial climbing
altitudes provided by the first one and then forecast the
rest of the trajectory until the aircraft reaches its RFL.
The prediction method can not use sliding windows be-
cause we do not have real points at our disposal. Then
the S method will be used instead. As two networks are
used, the complete prediction method is called the TN
method.

3 Results

The first method using sliding windows has been ap-
plied with a network trained with 142 trajectories from

Initial prediction
network (beginning
of trajectory)

Complete trajectory
prediction network

Complete predicted trajectory

Initial altitude RFL-Initial altitude

speeds
Predicted first

using standard method

Figure 3: Complete prediction with the TN method

Table 1: Mean, Max errors and standard deviation for
the SW prediction of learnt and non-learnt trajectories

δt Mean err. Max err. Std deviation
1 min 10 ft 267 ft 9 ft
2 min 166 ft 2298 ft 88 ft
3 min 266 ft 3165 ft 145 ft
4 min 332 ft 3416 ft 186 ft
5 min 448 ft 3575 ft 212 ft

the learning base and used for prediction with these
142 trajectories and with 50 non-learnt flights. Table 1
shows the corresponding results while figures 4 and 5
give examples of prediction.

The smallerδt, the best the prediction. Indeed, if
this parameter is small the method is more reactive and
therefore is able to adapt rapidly to the changes occur-
ring in the trajectory. Even if the sliding window is not
used (last line in the table) prediction is not bad. Fur-
thermore, networks can adapt to non-learnt trajectories.

Obviously neural networks are able to predict aircraft
trajectories with the S and SW methods. In order to
test the S and TN methods, the same set of learnt and
non-learnt trajectories is used for prediction. The corre-
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Figure 4: Example of a real trajectory and the corre-
sponding prediction

Table 2: Errors obtained with S and TN methods
Method Mean err. Max err. Std dev.

S 582 ft 3612 ft 348 ft
TN 617 ft 3744 ft 340 ft

sponding results are shown in table 2.
The average error only increases by 35 ft when com-

paring TN to S method. It represents only 6% of the
total mean error so the TN method is acceptable. The
TN method can predict an aircraft trajectory with very
few datas: the initial altitude, the RFL and the aircraft
type are the only parameters needed. Moreover, if the
real trajectories are available while the aircraft flies, it
is possible to improve precision by using past known
vertical speeds and then give a reactive prediction with
the SW method.

Next section compares these results to those obtained
by other prediction schemes.

4 Comparisons

Let us first compare the previous algorithms with non-
parametric methods: the results obtained in [4] are
shown in table 3. These methods use the same kind
of input data (altitudes or vertical speeds) but can only
work with sliding windows. Neural networks are much
more efficient in predicting trajectories as average er-
rors are twice to four times smaller than with non-
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Figure 5: Real trajectory not included in the learning
base and corresponding prediction

Table 3: Mean, Max prediction errors obtained with
non-parametric methods

δt Mean err. Max err.
1 min 40 s 500 ft 1900 ft
3 min 20 s 900 ft 5100 ft

parametric methods. Furthermore, these methods can
not give a prediction before aircraft actually fly.

We can also compare our results with methods using
models of aircraft. Several classical prediction func-
tions such as Cat/Mask, Cat/Petric, Strange/Petric and
Strange/Cautra are in use. They have been studied
in the THAALES (Trajectory prediction Handling Air-
craft and Airspace models Linked in an Evaluation Soft-
ware) project as described in [2]. They include two
main components:

• aircraft models. Performances are given by a table
or by an algorithm based on simplified aerodynam-
ics equations;

• an algorithm which makes the prediction. It uses
the model and the flight plan to fly the aircraft and
then forecast its trajectory.

Table 4 shows the results obtained by these methods
applied to the prediction of climbing aircraft. The tra-
jectories used are from the same databases as the one
used for neural networks. Moreover the experiments
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Table 4: Mean, Max prediction errors obtained with
models of aircraft

Prediction Func. CM CP SP SC
Mean Error (ft) 1539 1278 1269 1600
Max Error (ft) 5046 3947 6376 4109

Std deviation (ft) 980 898 902 1059

were conducted on an identical aircraft type which cor-
responds to an Airbus A320 class (EA32 type).

Again, neural networks give better results than these
prediction functions. There are several explainations,
including:

• lots of parameters are used by classical prediction
functions while some of them are not accurately
known (take off weight or weather conditions for
example)

• standard speed profiles are used to fly the aircraft
but these are different for each company. More-
over, they are not always available

• some of the models (Cautra) are not precise
enough to get a good prediction

5 Conclusion

Neural networks are more efficient than existing non-
parametric methods. Moreover, they outperform the
technics currently used in the operational systems.
Their application is simple and requires very few data.
They can be used before and while aircraft fly. Experi-
ments on trajectories in real time in an operational con-
text are now the next step to complete.
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